Stress-induced Ethylene Production in the Ethylene-requiring Tomato Mutant Diageotropica.
نویسندگان
چکیده
Ethylene synthesis in vegetative tissues is thought to be controlled by indoleacetic acid (IAA). However, ethylene synthesis in the diageotropica (dgt) mutant of tomato (Lycopersicon esculentum Mill.) was much less sensitive to IAA than in the normal variety (VFN8). Yet, mechanical wounding stimulated ethylene production by the mutant. The dgt tomato provides an opportunity to study the regulation of stress ethylene independent of IAA effects. Waterlogging (i.e. anaerobic stress) stimulated production of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), in the roots. The ACC was transported to the shoot where it was converted to ethylene. The dgt mutant efficiently utilized ACC for ethylene synthesis under aerobic conditions. The results confirm that the genetic lesion in dgt is located at a step prior to the formation of ACC. Furthermore, induction of ethylene synthesis by anaerobic or mechanical stresses in this mutant is independent of IAA action.
منابع مشابه
Stress - induced Ethylene Production in the Ethylene - requiring Tomato Mutant
Ethylene synthesis in vegetative tisues is thought to be controlled by indoleacetic acid (IAA). However, ethylene synthesis in the diageotropka (dgt) mutant of tomato (Ly mkoaesc MIlL) was much less sensitive to IAA than In the norml variety (VFNS). Yet, mehanial wounding stimuted ethyne production by the mutant. The dgt tomato provides an opportunity to study the regulation of stress ethylene ...
متن کاملA Unique Phenotype in Heterozygotes of the Auxin-Insensitive Mutant of Tomato, diageotropica.
Tomato (Lycopersicon esculentum Mill.) plants heterozygous for the diageotropica (dgt) mutation exhibit a unique phenotype, termed ;mottled.' Unlike dgt, mottled individuals grow upright, exhibit normal root branching, and produce normal levels of ethylene in response to applied auxin. Leaves of mottled plants are deformed and reduced in size and are characterized by a mottled appearance on the...
متن کاملEthylene and hydrogen peroxide are involved in brassinosteroid-induced salt tolerance in tomato
Crosstalk between phytohormone pathways is essential in plant growth, development and stress responses. Brassinosteroids (BRs) and ethylene are both pivotal plant growth regulators, and the interaction between these two phytohormones in the tomato response to salt stress is still unclear. Here, we explored the mechanism by which BRs affect ethylene biosynthesis and signaling in tomato seedlings...
متن کاملRegulation of early tomato fruit development by the diageotropica gene.
The vegetative phenotype of the auxin-resistant diageotropica (dgt) mutant of tomato (Lycopersicon esculentum Mill.) includes reduced gravitropic response, shortened internodes, lack of lateral roots, and retarded vascular development. Here, we report that early fruit development is also dramatically altered by the single-gene dgt lesion. Fruit weight, fruit set, and numbers of locules and seed...
متن کاملEthylene is involved in maintaining tomato (Solanum lycopersicum) pollen quality under heat-stress conditions
BACKGROUND AND AIMS Exposure to higher-than-optimal temperatures reduces crop yield and quality, mainly due to sensitivity of developing pollen grains. The mechanisms maintaining high pollen quality under heat-stress conditions are poorly understood. Our recently published data indicate high heat-stress-induced expression of ethylene-responsive genes in tomato pollen, indicating ethylene involv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 65 2 شماره
صفحات -
تاریخ انتشار 1980